What causes motor neuron disease?

Ammar Al-Chalabi

Joint MNDA RCN Conference

5 November 2014

ammar.al-chalabi@kcl.ac.uk
“Are there different types of MND?”

“What type have I got?”
Damage causes weakness, stiffness and brisk reflexes.

Upper motor neuron damage causes weakness, wasting, twitching, and loss of reflexes.

Lower motor neuron damage causes weakness.
Types of MND - Neurologists

- **Clinical experience**
 - Bulbar palsy
 - Limb onset ALS
 - Flail arm syndrome
 - Flail leg syndrome
 - Primary lateral sclerosis
 - Progressive muscular atrophy
Types of MND - Neurologists

• Neurologists
 – classifications predict survival

Wijesekera LC et al, Neurology 2009
Types of MND - Neurologists

- Neurologists
 - classifications predict survival

Bulbar onset

50% survival = 2 years

Wijesekera LC et al, Neurology 2009
Types of MND - Neurologists

- Neurologists
 - classifications predict survival

Flail leg syndrome
50% survival = 6 years

Wijesekera LC et al, Neurology 2009
Types of MND - Machines

- **Machine classification**
 - Statistical patterns extracted using latent class cluster analysis

- **5 groups identified**
 - Match mainly to bulbar onset, age of onset, diagnostic delay
Types of MND - Machines

- Neurologists
 - classifications predict survival

- Machines
 - classifications predict better

Wijesekera LC et al, Neurology 2009

Ganesalingam J et al, PLoSOne 2009
Types of MND - Machines

- Machines
 - classifications predict better

Group 3
No deaths in study

Ganesalingam J et al, PLoSOne 2009
Types of MND - Machines

- Machines
 - classifications predict better

Group 4
50% survival = 7 years

Ganesalingam J et al, PLoSOne 2009
Types of MND - Machines

- Machines
 - classifications predict better

Group 5
50% survival = 14 years

Ganesalingam J et al, PLoSOne 2009
Collaborations needed to study subtypes of MND

- **EuroMotor**
 - Population registers and DNA Banks to collect data

- **SOPHIA**
 - Collect huge amounts of data in a standardized way

- **STRENGTH**
 - Multiple layers of data to find subtypes of MND

- **ALS-CarE**
 - Generate the ideal care pathway for the subtypes
“I thought it was a rare condition”
How common is MND?

- Most common neurodegenerative disease of mid-life

- At least 3 people diagnosed per day in the UK
 - Average GP sees one affected person in their lifetime
 - Average neurologist sees two affected people per year
 - We see 200 newly diagnosed people per year
Lifetime risk of MND

1 in 300 risk

“Is it something I did?”

“What causes MND?”
Exercise and MND risk

- **Anecdotal experience of neurologists**
 - But biased selection

- **Gulf war veterans**
 - Deployment rather than fitness

- **Studies of exercise**
 - Inconclusive but suggest a risk factor
Handedness and MND

- Arms exercised asymmetrically based on dominance
- Legs exercised equally regardless of dominance
- Natural test of relationship between exercise and MND

Turner M et al., JNNP 2010
Handedness and MND

• 151 upper limb onset patients
 – 64% onset in dominant limb
 • Statistically different from 50:50

• 181 lower limb onset patients
 – 55% onset in dominant limb
 • Statistically same as 50:50

• Exercised limb more likely to be affected first
 – Other explanations too

Turner M et al., JNNP 2010
Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players

Adriano Chiò, Gianmartino Benzi, Maurizia Dossena, Roberto Mutani and Gabriele Mora

1Dipartimento di Scienze Fisiologiche-Farmacologiche, Cellulari-Molecolari, Sezione di Farmacologia e Biotecnologie Farmacologiche, Università di Pavia, and 2Divisione di Neuroriabilitazione 2, Fondazione Salvatore Maugeri, IRCCS, Istituto Scientifico di Pavia, Pavia and 3Divisione di Neurologia 2, Dipartimento di Neuroscienze, Università di Torino, Torino, Italy

Correspondence to: Dr Adriano Chiò, Department of Neuroscience, via Cherasco 15, 10126 Torino, Italy
E-mail: achio@usa.net
Football and MND

• Italian professional players
 – Serie A, B and C

• 7325 in study cohort
• Age range 18 – 69

• 5 cases identified
 – Expect 0.77

• Excess risk of death 6.5 times average

• Different analysis suggests no increased risk
UK football cluster

Three soccer playing friends with simultaneous amyotrophic lateral sclerosis

PAUL WICKS¹, JEBAN GANESALINGHAM², CHRISTINE COLLIN³, MARTIN PREVETT⁴, NIGEL P. LEIGH³ & AMMAR AL-CHALABI⁵

Amyotrophic Lateral Sclerosis
2007, 1–3, article
UK football cluster

• **Three friends**
 – Grew up in the same small village in Kent
 – Played amateur football
 • Several times a week for 12 to 28 years
 • Two on same team
 • Same pitches
 – All had MND at the same time
 • Two died the same weekend

• **Shared other potential risk factors**
 – Smoking, electric shock, trauma, exercise
Smoking and MND

- Best quality studies show smoking increases risk
 - Dose response

- Dutch study shows worsens survival too
 - Clinic populations unlikely to have many smokers

- Some studies suggest women more at risk
“There is a cluster of cases near me”
Geographic distribution of ALS in South East England 1996 - 2006

Scott KM et al, Neuroepidemiology, 2008
Geographic distribution of ALS in South East England 1996 - 2006

Scott KM et al, Neuroepidemiology, 2008
Geographic clustering in South East London 1996 - 2006

Scott KM et al, Neuroepidemiology, 2008
Geographic clustering in South East London 1996 - 2006

Scott KM et al, Neuroepidemiology, 2008
Geographic clustering in Finland 1990

Clustering in Piedmont region, Italy

Migliaretti G, ALS 2012
Relative Risk of ALS – all cases 1995 – 2013
National MND Register

- Aim to capture information on every person with MND in the UK
 - Significant challenges
 - Many benefits
“How long have I got?”
How long have I got?

- We can make a reasonably good prediction
 - Main factors are age of onset, site of onset, diagnostic delay and Riluzole use
NO

Respiratory failure

YES

Mortality rate per month

<table>
<thead>
<tr>
<th>Mortality rate per month</th>
<th>NIV</th>
<th>NO NIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>BULBAR ONSET</td>
<td>20%</td>
<td>54%</td>
</tr>
<tr>
<td>LIMB ONSET</td>
<td>10%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Use nomogram
Respiratory failure

- NO: Use nomogram
- YES:
 - One year survival
 - NIV
 - BULBAR ONSET: 7%
 - LIMB ONSET: 28%
 - NO NIV
 - BULBAR ONSET: 0%
 - LIMB ONSET: 1%
limb onset, riluzole

median survival from diagnosis (months)

age at onset

diagnostic delay (months)
“Will others in my family develop MND?”
Is there a genetic component to MND?

- **Meta-analysis**
 - British MND Twin Study
 - Swedish Twin Registry
 - King’s ALS Register

<table>
<thead>
<tr>
<th>At least one affected</th>
<th>MZ</th>
<th>DZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concordant pairs</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Discordant pairs</td>
<td>44</td>
<td>122</td>
</tr>
</tbody>
</table>

- **Heritability**
 - 0.61 (0.38-0.78)

- **Environmental component**
 - 0.39 (0.22 – 0.62)

Al-Chalabi et al, JNNP 2010
MND inheritance is complex

With kind permission of Peter Andersen
Genes are an important risk factor

- Genes found for familial and sporadic MND
 - Need large collaborations for gene discovery
 - 14,000 cases
 - 25,000 controls
Some important genes in MND

- VAPB
- OPTN
- VCP
- SOD1?
- FIG4, SIGMAR1, ALS2, SPG11

- TDP43
- ANG
- TAF15
- FUS
- ELP3
- SETX
- UBQLN2
- UNC13A
- ATXN2
Project MinE

- Aim to sequence whole genomes
 - 25,000 ALS genomes
 - 7,500 control genomes

- Nine countries participating so far
Is there a risk to relatives?

- Background risk of MND is 1 in 300
 - Means risk of not developing MND is 99.7%
 - Risk for relatives not developing MND is ~98%

Hanby MF et al, Brain, 2011
Is there a risk to relatives?

- Background risk of MND is 1 in 300
 - Means risk of not developing MND is 99.7%
 - Risk for relatives not developing MND is ~98%

- There is no great change in risks for those with no family history

Hanby MF et al, Brain, 2011
“So how come I have MND?”
A simple model of MND risk

Health

Genetic load (G)

Cell damage with time (T)

Environmental exposures (E)

Burden of disease causing factors

No disease

Disease

Al-Chalabi and Hardiman, Nature Reviews Neurol 2013
A simple model of MND risk

Health

Burden of disease causing factors

Birth
G
T
E
Onset

No disease
Disease

Al-Chalabi and Hardiman, Nature Reviews Neurol 2013
A simple model of MND risk

Health

Birth

Onset

Death

Burden of disease causing factors

No disease

Disease

Self-perpetuating process

Al-Chalabi and Hardiman, Nature Reviews Neurol 2013
A simple model of MND risk

Health

Burden of disease causing factors

No disease Disease

Birth Onset Death

Self-perpetuating process

Al-Chalabi and Hardiman, Nature Reviews Neurol 2013
A simple model of MND risk

Health

Burden of disease causing factors

No disease Disease

Birth

Onset

Death

Al-Chalabi and Hardiman, Nature Reviews Neurol 2013
Is MND a multistep process?

• If MND is a multistep process
 – Plot
 • $\log(\text{incidence})$ vs $\log(\text{age})$
 – Straight line?
 – Slope + 1 = number of steps needed

Al-Chalabi A, Lancet Neurology 2014
SEALS (England)

Slope of $5 = 6$ steps

$r^2 = 0.95$
Netherlands

Slope of 5 = 6 steps

$r^2 = 0.99$
Piedmont

Slope of 5 = 6 steps

$r^2 = 0.95$
Ireland

Slope of 5 = 6 steps

\[r^2 = 0.99 \]
Scotland

Slope of 5 = 6 steps

\[r^2 = 0.97 \]
Overall findings

Slope of 5 = 6 steps

$r^2 = 0.99$
A simple model of MND risk

6 STEPS

Burden of disease causing factors

No disease | Disease

Self-perpetuating process

Al-Chalabi and Hardiman, Nature Reviews Neurol 2013
Conclusions

• Genes and environment combine to cause MND

• Research helps answer patient questions
Acknowledgements

UK
Nigel Leigh
Chris Shaw
Richard Orrell
John Hardy
Andrea Malaspina
Aleks Radunovic
Pamela Shaw
Carolyn Young
Siddharthan Chandran
Kevin Talbot
Martin Turner

Ireland
Orla Hardiman
Susan Byrne

Italy
Adriano Chio
Vincenzo Silani

Holland
Leonard van den Berg
Jan Veldink
Michael van Es

Belgium
Wim Robberecht

US
Bob Brown
John Landers
Teepu Siddique

Sweden
Peter Andersen

Germany
Albert Ludolph

Switzerland
Markus Webber

Australia
Garth Nicholson

William Sproviero, Anna Kulka, Bunmi Abel, Aleksey Shatunov, Ashley Jones, Kirsten Scott, Ione Woollacott, Rubika Balendra, Vic Wallace, Lisa van der Kleij, Michele Benigni, Sarah Martin, Isabella Fogh, Robert Pitceathly, Catherine Knights, Adrian Broughton, Andrew Dougherty, Adil Sami

Al-Chalabi Lab 2014